# A NOTE ON CONSTRUCTING BALANCED INCOMPLETE BLOCK DESIGNS 

J. SUBRAMANI<br>University of Madras, Madras<br>(Received: August, 1988)

## Summary

A method has been described for constructing a class of balanced incomplete block (BIB) designs by using mutually orthogonal latin squares (MOLS) in which the diagonal elements are in natural order.
Keywords : Orthogonal latin squares, Balanced incomplete block desings.

## Introduction

Muller [1] introduced a method of constructing a class of balanced incomplete block (BIB) designs with parameters :

$$
\begin{equation*}
v=s b=s(s-1) r=t(s-1) k=t \text { and } \lambda=t(t-1) \tag{1}
\end{equation*}
$$

(where $t<s$ ) whenever a complete set of mutually orthogonal latin squares (MOLS) of order $s$ exists. Consequently his method is applicable only when $s$ is a prime or prime power. Recently Subramani [2] has developed an alternative method of constructing BIB designs with parameters (1) by using only a set of $t$ MOLS. This can be true for any value of $s$. For example, if there exists a set of 4 MOLS of order 10 , then we can construct a BIB design with parameters

$$
\begin{equation*}
\nu=10 b=90 r=36 k=4 \text { and } \lambda=12 \tag{2}
\end{equation*}
$$

whereas Muller's method requires a set of 9 MOLS of order 10. In this paper, further reduction on the requirement of the MOLS has been made
to construct the BIB designs (1) under certain conditions. This procedure requires minimum number of MOLS comparing to the methods of Subramani [2] and Muller [1]. For example, the procedure to be discussed in Section 2, requires only 2 MOLS to construct the BIB design (2), as demonstrated by means of an example using two MOLS of order 10 with diagonal elements in natural order in each of them, whereas the methods of Subramani [2] and Muller [1] essentially need 4 and 9 MOLS respectively.

## 2. Main Results

Throughout this note we use the notations $0(n, t)$ and $H(n, m)$ to represent respectively the existence of $t$ MOLS and $m$ th order hypergraeco latin squares (HGLS) of order $n$. To refer readily the method of Subramani [2] is given below :

Let $L 1, L 2, \ldots, L t$ be a set of $t$ mutually orthogonal latin squares (MOLS) of order $n$ with the elements in the first row in natural order. That is, MOLS are all in semistandard form. By superimposing any $m$ MOLS we get $m$ th order HGLS $H(n, m)$ of order $n$. Then omitting the first row and forming the remaining $n(n-1)$ cells as blocks we get a class of BIB designs with parameters

$$
v=n b=n(n-1) r=m(n-1) k=m \text { and } \lambda=m(m-1)(3)
$$

where $2 \leqslant m \leqslant t$.
An alternative method which needs only ( $m-2$ ) MOLS is as follows :
Let $L 1, L 2, \ldots, L t$ be a set of $t$ MOLS with main diagonal elements in natural order. If we superimpose any $m$ MOLS we get $\operatorname{HGLS} H(n, m)$. The element in $(r, s)$ th cell of $H(n, m)$ is denoted by $h r s=(i 1, i 2, \ldots$, $i m$ ) where $i j$ is the element corresponding to the $j$ th square. Obviously we can have

$$
\begin{aligned}
& i 1=i 2=\ldots=\text { im } \quad \text { if } r=s \\
& i 1 \neq i 2 \neq \ldots \neq \text { im } \quad \text { if } r \neq s
\end{aligned}
$$

That is the diagonal elements of $H(n, m)$ are in natural order.
By omitting the diagonal cells and forming the remaining cells together with their cell representation as a' block we have $n(n-1)$ blocks each of size $(m+2)$. For example, if we have the elements (il $i 2 \ldots$ im) in $(r, s)$ th cell then the block obtained from this is $(r s i 1 i 2 \ldots \mathrm{im})$. Similarly we can obtain the other blocks. It can be easily shown that these $n(n-1)$ blocks constitute a BIB design with parameters

$$
\begin{align*}
& v=n b=n(n-1) k=m+2 r=(m+2)(n-1) \text { and } \\
& \lambda=(m+2)(m+1) \tag{4}
\end{align*}
$$

where $2 \leqslant m \leqslant i$.
Since each element is associated with all other elements equally in $(m+2)(m+1)$ cells and occurs in $(m+2)(n-1)$ cells the proof follows. To illustrate explicitly, consider the pair ( $r s$ ). By this procedure, $r$ th row is associated with sth element in $m$ cells and $s$ th row is associated with $r$ th element in $m$ cells. Similarly, $r$ th and $s$ th columns are associated with $s$ th and $r$ th elements respectively in $m$ cells. Further in the $H(n, m)$, the pair ( $r s$ ) occurs in $m(m-1)$ cells the $r$ th row is associated with $s$ th column and $s$ th row is associated with $r$ th column. Totally pair $(r s)$ comes $4 m+m(m-1)+2=(m+2)(m+1)$ times. And the other conditions are obvious by the definition of $O(n, t)$ and $H(n, m)$.

The following theorem summarizes the above result.
Theorem 1: If $H(n, t)$ cxists with diagonal elements in natural order then we can always construct a BIBD with parameters

$$
\begin{align*}
& v=n b=n(n-1) k=m+2 r=(m+2)(n-1) \text { and } \\
& \lambda=(m+2)(m+1) \tag{5}
\end{align*}
$$

where $2 \leqslant m \leqslant t$.
Corollary $1:$ Let $t=1$ in $H(n, t)$. That is, if there exists only one latin square with diagonal elements in natural order then the resulting BIB design is

$$
\begin{equation*}
v=n \quad b=n(n-1) k=3(n-1) \text { and } \lambda=6 \tag{6}
\end{equation*}
$$

It is to be noted that the above design always exists for any integral value of $n>3$.

## 3. Example

Let us consider two orthogonal latin squares $L 1$ and $L 2$ of order 10 as given below.

## L 1

$\begin{array}{llllllllll}1 & 3 & 6 & 9 & 7 & 4 & 2 & 0 & 8 & 5 \\ 9 & 2 & 4 & 7 & 1 & 8 & 5 & 3 & 0 & 6 \\ 0 & 1 & 3 & 5 & 8 & 2 & 9 & 6 & 4 & 7 \\ 5 & 0 & 2 & 4 & 6 & 9 & 3 & 1 & 7 & 8 \\ 8 & 6 & 0 & 3 & 5 & 7 & 1 & 4 & 2 & 9 \\ 3 & 9 & 7 & 0 & 4 & 6 & 8 & 2 & 5 & 1 \\ 6 & 4 & 1 & 8 & 0 & 5 & 7 & 9 & 3 & 2 \\ 4 & 7 & 5 & 2 & 9 & 0 & 6 & 8 & 1 & 3 \\ 2 & 5 & 8 & 6 & 3 & 1 & 0 & 7 & 9 & 4 \\ 7 & 8 & 9 & 1 & 2 & 3 & 4 & 5 & 6 & 0\end{array}$

## $L 2$

| 1 | 9 | 0 | 5 | 8 | 3 | 6 | 4 | 2 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 2 | 1 | 0 | 6 | 9 | 4 | 7 | 5 | 8 |
| 6 | 4 | 3 | 2 | 0 | 7 | 1 | 5 | 8 | 9 |
| 9 | 7 | 5 | 4 | 3 | 0 | 8 | 2 | 6 | 1 |
| 7 | 1 | 8 | 6 | 5 | 4 | 0 | 9 | 3 | 2 |
| 4 | 8 | 2 | 9 | 7 | 6 | 5 | 0 | 1 | 3 |
| 2 | 5 | 9 | 3 | 1 | 8 | 7 | 6 | 0 | 4 |
| 0 | 3 | 6 | 1 | 4 | 2 | 9 | 8 | 7 | 5 |
| 8 | 0 | 4 | 7 | 2 | 5 | 3 | 1 | 9 | 6 |
| 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 0 |

By superimposing $L 1$ and $L 2$ and omitting the diagonal cells, the ${ }^{i}$ remaining cells together with their cell representation constitute the BIBD with parameters

```
v=10 b=90 r= 36 k=4 and }\lambda=1
    1239}22193 3106 4159 5187 6134 7162 8140 9128 0175
    1360
    1495
    1578}2516 3580 4563 5436 6409 7483 8421 9467 0418
    1643
    1726}27754 3791 4738 5710 6785 7658 8602 9615 0631
    1804}2883
    1982}22905 3948 4976 5923 6951 7930 8917 9871 0853
    1057}20068[3079 4081 5092 6013 7024 8085 9046 0964
```

ACKNWLEDGEMENTS
The author would like to thank Dr. K. N. Ponnuswamy for his useful discussions and also to the referee for his valuable comments regarding the improvement of the paper.

## REFERENCES

[1] Muller, E. R. (1965) : A method of constructing balanced incomplete block designs, Biometrika, 52: 285-288.
[2] Subramani, J. (1988): A method of construction of balanced incomplete bloek designs (in press).

